计蒜之道 初赛第一场 题解

手速场才苟到$rank\ 63$,我好菜啊…

Problem A

发现答案就是删完之后的连通块个数。
普遍答案是$son[i]+son[j]$,但是如果$i,j$相邻,要$-1$.
第一次因为没考虑清楚WA了一次。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <bits/stdc++.h>
#define dbg(x) std::cerr << #x << " = " << x << endl
using namespace std;
typedef long long ll;

const int N = 5000 + 10;

int n, child[N], f[N];
vector <int> g[N];

void dfs(int u, int fa) {
child[u] = 0;
for(int v : g[u]) {
if(v == fa) continue;
f[v] = u;
dfs(v, u);
++child[u];
}
}
int main() {
cin >> n;
for(int i = 1; i < n; i++) {
int u, v; cin >> u >> v;
g[u].push_back(v); g[v].push_back(u);
}

dfs(1, 0);

int ans = 0;
for(int i = 1; i <= n; i++)
for(int j = i + 1; j <= n; j++) {
int k = i == 1 ? child[i] : child[i] + 1;
if(f[j] == i) ans = max(ans, k + child[j] - 1);
else ans = max(ans, k + child[j]);
}

cout << ans << endl;
return 0;
}

Problem B

简单dp。
设$dp[i][j]$表示第i个点填j的方案数,按题意转移。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#include <bits/stdc++.h>
#define dbg(x) std::cerr << #x << " = " << x << endl
using namespace std;
typedef long long ll;

const int N = 1000 + 10;
ll dp[N][1000 + 10], n, m, a[N];
int main() {
cin >> n >> m;
for(int i = 1; i < n; i++) {
int u, v, w; cin >> u >> v;
cin >> a[i];
}

for(int i = 1; i <= m; i++) dp[1][i] = 1;

for(int i = 2; i <= n; i++) {
for(int j = 1; j <= m; j++) {
for(int k = 1; k <= m; k++) {
if(__gcd(j, k) != a[i - 1]) dp[i][j] = (dp[i][j] + dp[i - 1][k]) % (int)(1e9 + 7);
}
}
}

ll ans = 0;
for(int i = 1; i <= m; i++) ans = (ans + dp[n][i]) % (ll)(1e9 + 7);
cout << ans << endl;
return 0;
}

Problem C

发现状态数合理,瓶颈在于转移。
打个表发现不合理的转移只有$m^2$种,可以先加上然后一个一个减。
用树形$dp$维护即可。另外由于儿子的贡献是有关联的,要相乘而不是相加。
(一度sb不知道是相乘还是相加)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#include <bits/stdc++.h>
#define dbg(x) std::cerr << #x << " = " << x << endl
#define int long long
using namespace std;
typedef long long ll;

const ll N = 1000 + 10;
const ll mod = (ll)(1e9 + 7);
ll dp[N][N], sum[N], sum1[N][N], sz[N], m, n;

vector <ll> pool[N][N];
vector <pair <ll, ll> > g[N];

void dfs(int u, int f) {
for(int i = 1; i <= m; i++) dp[u][i] = 1;

for(auto x: g[u]) {
int v = x.first, w = x.second;
if(v == f) continue;
dfs(v, u);
for(int j = 1; j <= m; j++) {
int now = sum[v];
for(auto k: pool[w][j]) now = (now - dp[v][k] + mod) % mod;
dp[u][j] = dp[u][j] * now % mod;
}
}
for(int i = 1; i <= m; i++) sum[u] = (sum[u] + dp[u][i]) % mod;
}
signed main() {
scanf("%d%d", &n, &m);
for(int i = 1; i < n; i++) {
int u, v, w; scanf("%d%d%d", &u, &v, &w);
g[u].push_back({v, w}); g[v].push_back({u, w});
}

for(int k = 1; k <= m; k++)
for(int i = 1; i <= m; i++)
for(int j = k; j <= m; j += k)
if(__gcd(i, j) == k) pool[k][i].push_back(j);

dfs(1, 0);

ll ans = 0;
for(int i = 1; i <= m; i++) ans = (ans + dp[1][i]) % mod;
cout << ans << endl;
return 0;
}

评论

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×